
Fortran GPU Compilers: Improving
But No Silver Bullet

Tom Henderson
NOAA Global Systems Division

Thomas.B.Henderson@noaa.gov

Mark Govett, Jacques Middlecoff
Paul Madden, James Rosinski,

Craig Tierney

9/12/12

Thunder Stolen?

2

  I was planning a rant but…
  Compiler vendors are

already responding to my
whining!

 Bullet is not silver yet…
  Forecast: more whining

9/12/12

Outline

 The despair of “Tightly-Nested Outer
Loops” (TNOL)

 The joy of bitwise-exact comparison
 The ongoing agony of data transfers

3

9/12/12

TNOL

4

! This is OK
do ipn=1,nip
 do k=1,nvl
 <statements>
 enddo
enddo

! This is NOT OK
do ipn=1,nip
 <statements>
 do k=1,nvl
 <statements>
 enddo
enddo

  Commercial directive-based Fortran GPU
compilers require(d) “tightly-nested outer
loops” (TNOL)
  Forces extensive restructuring of legacy codes
  Restructuring may promote arrays increasing

memory footprint
  Not a limitation for F2C-ACC

9/12/12

TNOL

 Created NIM “vdmintv” stand-alone test
  Key NIM subroutine (25% of wall-clock

time)
 TNOL requires promotion of temporary

arrays to higher rank
  2.5x slow down on CPU!

5

9/12/12

TNOL

 GPU optimization via F2C-ACC and
NVIDIA’s Paulius Micikevicius
  Paulius identified best possible CUDA

solution
 TNOL costs ~15% on GPU

  Comparing fastest schemes using mixes of
GPU “shared” and “local” memory

6

9/12/12

Compiler Vendor Response

 Strong response for TNOL
  Cray
  CAPS
  PGI
  (PathScale)

 Eventual fix in OpenACC
  Expect approaches to converge

7

9/12/12

Compiler Vendor Response

 Some progress on more advanced
optimizations like shared/local memory
  Cray

  Shared memory, close to F2C-ACC
performance

  CAPS
  Shared memory, close to F2C-ACC

performance
  PGI

 Different approaches now
 8

9/12/12

Outline

 The despair of “Tightly-Nested Outer
Loops” (TNOL)

 The joy of bitwise-exact comparison
 The ongoing agony of data transfers

9

9/12/12

Bitwise-Exact Comparison

 As of CUDA v4.2 and F2C-ACC v4.2
bitwise-exact comparison between CPU
and GPU can be achieved!
  nvcc compiler flags

  “-ftz=true –fmad=false”
  Avoid library functions including “pow” (**)

 Greatly speeds up debugging
  NIM now has a run-time switch to run “**”

operations on CPU for automated testing

10

9/12/12

Outline

 The despair of “Tightly-Nested Outer
Loops” (TNOL)

 The joy of bitwise-exact comparison
 The ongoing agony of data transfers

11

Host-Device Data Transfers

  “Accelerator” model is well-supported

Z = g(X,Y,C)

A,B,C = h(X,Z)

X,Y = f(A,B,C)
A,B,C

X,Y
X,Y,C

Z
X,Z

A,B,C
CPU GPU/MIC PCIe

Host-Device Data Transfers

  “State on Accelerator” is a bit harder

Z = g(X,Y,C)

A,B,C = h(X,Z)

X,Y = f(A,B,C)
A,B,C

X,Y,C

X,Z

A,B,C
CPU GPU/MIC PCIe

Host-Device Data Transfers

 Per-kernel validation is painful!

Z = g(X,Y,C)

A,B,C = h(X,Z)

X,Y = f(A,B,C)
A,B,C

X,Y

Z

A,B,C
CPU GPU/MIC PCIe

9/12/12

Please Make Data Transfers
Easier

 Compiler has all the information it needs
via directives

 User should be able to say “data lives
here, run the kernel there”
  Reduce “accidental complexity”

 Stop the whining!

15

9/12/12

Thanks to…

 Francois Bodin, Guillaume Poirier, and
others at CAPS for assistance with HMPP

 Pete Johnsen at Cray for assistance with
Cray OpenACC GPU compiler

 Dave Norton and others at PGI for
assistance with PGI Accelerator

 Paulius Micikevicius at NVIDIA
 We want to see multiple successful

commercial directive-based Fortran
compilers for GPU/MIC

16

17

Thank You

